Bifurcation analysis of a class of first-order nonlinear delay-differential equations with reflectional symmetry

نویسندگان

  • Brian F. Redmond
  • Victor G. LeBlanc
  • André Longtin
چکیده

We consider a general class of first-order nonlinear delay-differential equations (DDEs) with reflectional symmetry, and study completely the bifurcations of the trivial equilibrium under some generic conditions on the Taylor coefficients of the DDE. Our analysis reveals a Hopf bifurcation curve terminating on a pitchfork bifurcation line at a codimension two Takens–Bogdanov point in parameter space. We compute the normal form coefficients of the reduced vector field on the centre manifold in terms of the Taylor coefficients of the original DDE, and in contrast to many previous bifurcation analyses of DDEs, we also compute the unfolding parameters in terms of these coefficients. For application purposes, this is important since one can now identify the possible asymptotic dynamics of the DDE near the bifurcation points by computing quantities which depend explicitly on the Taylor coefficients of the original DDE. We illustrate these results using simple model systems relevant to the areas of neural networks and atmospheric physics, and show that the results agree with numerical simulations. © 2002 Elsevier Science B.V. All rights reserved. PACS: 02.30.Ks; 02.30.Oz; 87.18.Sn; 05.45.−a

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Numerical Solution of Nonlinear Equations Having Several Parameters . Part Iii : Equations with Z 2 - Symmetry

The computation of symmetry-breaking bifurcation points of nonlinear multiparameter problems with Z2 (reflectional) symmetry is considered. The numerical approach is based on recent work in singularity theory, which is used to construct systems of equations and inequalities characterising various types of symmetry-breaking bifurcation points. Numerical continuation methods are then used to foll...

متن کامل

λ-Symmetry method and the Prelle-Singer method for third-order differential equations

In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations.In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry m...

متن کامل

Stochastic differential equations and integrating factor

The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.

متن کامل

Stability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations

In this paper we introduce some stability criteria of nonlinear hybrid systems with time delay described by impulsive hybrid fuzzy system of differential equations. Firstly, a comparison principle for fuzzy differential system based on a notion of upper quasi-monotone nondecreasing is presented. Here, for stability analysis of fuzzy dynamical systems, vector Lyapunov-like functions are defined....

متن کامل

BIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF

‎In this paper‎, ‎first we discuss a local stability analysis of model was introduced by P‎. ‎J‎. ‎Mumby et‎. ‎al‎. ‎(2007)‎, ‎with $frac{gM^{2}}{M+T}$ as the functional response term‎. ‎We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef‎. ‎Next‎, ‎we consider this model under the influence of the time delay as the bifurcat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002